

Module title	SM Code	
Optoelectronics, LED & Lasertechnology		OLL
Module lecturer	Faculty	
Prof. Dr. Heiko Unold	Electrical Engineering and Information Technology	
Module language	Number of SWS / WSH	ETCS credits
English	4 SWS / WSH	5
Teaching format		
Seminar-based teaching with approx. 50% lab course		

Semester according to the study plan	
7 th semester (Bachelor)	
Attendance/classroom hours	Additional independent study
56 hours	Preparation and follow-up work: 70 hours Exam preparation: 24 hours
Type of examination / Requirements for the award of the credit points	
Portfolio assessment and oral exam	

Teaching content
<ul style="list-style-type: none"> • Perception and description of light (lighting technology & radiation physics quantities, colorimetry) • Fundamentals of technical optics (ray optics, matrix optics, real lenses, aberrations) • Fundamentals of wave optics and applications (Fabry-Perot resonator, dielectric coatings, Gaussian beams, polarisation) • Basic principle of optical detectors • Semiconductor materials and structures for efficient generation of optical radiation (direct semiconductors, hetero quantum structures, efficiencies) • Design, operation and measurement technology of modern power LEDs

- Overview of the operating principle, designs, operating modes, properties and applications of various laser types

Learning objective: Professional competence

After successfully completing this module, students will be able to

- use basic terms and measurements in lighting technology and optoelectronics in a meaningful way (1)
- correctly answer at least 40% of questions from a previously known selection of topics (see Teaching contents) and associated task types within the examination time (2)
- work independently in a team to successfully complete a self-selected project (optoelectronic measurement technology, simulation, construction of simple demonstrators) and present it in a comprehensible and competent manner (3)
- relate and understand given texts from specialist literature, possibly in connection with the lecture content (3, not examined)

Literature

Recommended reading

- Meschede, D. (2008). *Optik, Licht und Laser* (Third edition). Vieweg+Teubner
- Schubert, F. E. (2012). *Light-Emitting Diodes* (Second edition). Cambridge University Press
- Eichler, H. J., & Eichler, J. (2015). *Laser: Bauformen, Strahlführung, Anwendungen* (Eighth edition). Springer

The numbers in brackets indicate the levels to be achieved: (1)-know | (2)-can | (3)-understand and apply