
Ostbayerische Technische Hochschule Regensburg Lab Course Computer Science 1

Module title SM Code

Lab Course Computer Science 1 PIN1

Module lecturer Faculty

Prof. Dr. Peter Jüttner Electrical Engineering and Information Technology

Module language Number of SWS / WSH ETCS credits

English 2 SWS / WSH 2

Teaching format

Independent computer-based lab course; supervision upon request

Semester according to the study plan

1st semester (Bachelor)

Attendance/classroom hours Additional independent study

1 hour (submission discussions)
up to 23 hours(free allocation)

Preparation and follow-up work: 59 hours
(at home or in CIP-Pool). Sufficient
preparation and follow-up work for the IN2
submodule is a prerequisite

Type of examination / Requirements for the award of the credit points

Practical performance assessment

Teaching content

During the lab course, students will independently solve programming tasks that introduce and
deepen their understanding of the various concepts of procedural programming.

Students will implement tasks in C under guidance, with increasingly open-ended questions
throughout the semester, requiring independent thinking and thus strengthening their ability to
find solutions on their own.

The following topics are covered in particular:

• Basic concepts of procedural programming in C

Updated as of: September 2025 Page: 1

Ostbayerische Technische Hochschule Regensburg Lab Course Computer Science 1

• Structure of procedural programmes in C: definitions, declarations, statements, expressions,
functions

• Elementary data types: declaration, definition, data types, value ranges, internal representa-
tion, literal constants, constants, arrays, structured data types

• Operators and expressions: value and side effect, unary and binary operators, operator
priority, expressions, families of operators (bitwise, logical, arithmetic, as well as assignment
and comparison operators and special operators)

• Statements and control structures: expression statements, multiple statements, branches,
loops, functions and function calls

• Distinction between expressions and statements

• Execution model of the C language: functions, memory model, memory management,
parameter mechanism, pointers

• The translation process: preprocessor, compiler, linker, multi-part programmes

• Preprocessor: preprocessor symbols, replacement mechanism, conditional compilation,
include mechanism, predefined symbols

• Use of the standard library Applications of procedural programming in C

• Applications and algorithm families: finite state machines, sorting methods, random numbers
and Monte Carlo algorithms, iterative methods, recursion, simple graphics programming,
simple linked lists

• File access: creating, reading and writing files, formatted input and output, line-by-line input
and output, binary input and output

• Efficient use of the development environment

• Troubleshooting and use of the debugger

Learning objective: Professional competence

After successfully completing this module, students will be able to independently solve
programming problems using procedural programming.

Participants in the course will acquire the following knowledge (10%):

• Basic concepts and terms of procedural programming; knowledge of relevant English techni-
cal terms

• Basic language elements of C

• Knowledge of simple standard algorithms

Updated as of: September 2025 Page: 2

Ostbayerische Technische Hochschule Regensburg Lab Course Computer Science 1

• Basic knowledge of development tools and execution models

• Fundamental insight into the importance of non-functional properties (maintainability, devel-
opment effort, minimal redundancy in source code, efficient execution, economical use of
hardware resources) and possibilities for implementation

Participants in the course will acquire the following skills (2) (60%):

• Implementation of existing algorithms in C

• Understanding foreign implementations

• Independently designing simple algorithms of their own

• Presenting self-developed software solutions and discussing controversial approaches to
solutions

• Independently creating procedurally structured software designs and their correct implemen-
tation

• Working with development environments

• Independently using debugging tools for troubleshooting

Participants in the course will acquire the following technical and non-technical skills
(3) (30%):

• Independent problem analysis and structured problem-solving thinking

• Independent solving of low to medium complexity problems by designing C programmes

• Assessment of the plausibility of programme results

• Testing, debugging and troubleshooting of own and third-party C programmes

Literature

Recommended reading

• Böttcher, A., & Kneißl, F. (2012). Informatik für Ingenieure (Third edition). Springer

• Boswell, D., & Foucher, T. (2011). The Art of Readable Code: Theory in Practice. O’Reilly

• Wolf, J., & Krooß, R. (2020). Grundkurs C. Rheinwerk Computing

• Passig, K., & Jander, J. (2013). Weniger schlecht programmieren. O’Reilly

• Kernighan, B. W., & Ritchie, D. M. (1990). Programming in C. ANSI C. Hanser

The numbers in brackets indicate the levels to be achieved: (1)-know | (2)-can | (3)-understand and apply

Updated as of: September 2025 Page: 3

