

Module title	SM Code	
Digital Electronics	DT	
Module lecturer	Faculty	
Prof. Dr. Detlef Jantz	Electrical Engineering and Information Technology	
Module language	Number of SWS / WSH	ETCS credits
English	4 SWS / WSH	5
Teaching format		
Seminar-based teaching with approx. 10-15% exercises		

Semester according to the study plan	
1 st semester (Bachelor)	
Attendance/classroom hours	Additional independent study
60 hours	Preparation and follow-up work: 60 hours Exam preparation: 30 hours
Type of examination / Requirements for the award of the credit points	
Written exam: 90 minutes	

Teaching content
<ul style="list-style-type: none"> Number theory of bit vectors as a technical application of binary numbers Digital circuits (gates, signals, logic families, output circuits) Combinational logic design (circuit networks, examples) Design of sequential logic (circuit networks, state machines, examples) Diagrams and forms for representing specific circuit aspects Structural design of programmable logic devices Fundamentals of programmable logic using VHDL

Learning objective: Professional competence

After successfully completing this module, students will be able to

- analyse, design, minimise and optimise digital circuits using Boolean algebra (3)
- confidently use basic logic functions in various technical development contexts in hardware and software (3)
- understand the structure of microcomputer components and other digital components for further study in subsequent courses (2)
- recognise, analyse and expand fundamental digital circuits (1)
- analyse and understand the modular structure of basic digital circuits (2)
- use digital circuits based on two-valued logic in all forms (2)
- synthesise and simulate digital circuits in VHDL, prepared for further study in the practical course (2)
- express simple processes by means of programming in VHDL (3)

Literature**Recommended reading**

- Beuth, K. (2007). *Digitaltechnik: Elektronik 4*. Vogel
- Siemers, C., & Sikora, A. (2022). *Taschenbuch Digitaltechnik*. Hanser
- Reichardt, J. (2011). *Lehrbuch Digitaltechnik : eine Einführung mit VHDL*. Oldenbourg

The numbers in brackets indicate the levels to be achieved: (1)-know | (2)-can | (3)-understand and apply