

|                                                             |                                  |                     |
|-------------------------------------------------------------|----------------------------------|---------------------|
| <b>Module title</b>                                         | <b>SM Code</b>                   |                     |
| <b>Mathematics 2</b>                                        | <b>MA2</b>                       |                     |
| <b>Module lecturer</b>                                      | <b>Faculty</b>                   |                     |
| N.N.                                                        | Computer Science and Mathematics |                     |
| <b>Module language</b>                                      | <b>Number of SWS / WSH</b>       | <b>ETCS credits</b> |
| English                                                     | 6 SWS / WSH                      | 6                   |
| <b>Teaching format</b>                                      |                                  |                     |
| Seminar-based teaching with approx. 20% practical component |                                  |                     |

|                                                                              |                                                                        |
|------------------------------------------------------------------------------|------------------------------------------------------------------------|
| <b>Semester according to the study plan</b>                                  |                                                                        |
| 2 <sup>nd</sup> semester (Bachelor)                                          |                                                                        |
| <b>Attendance/classroom hours</b>                                            | <b>Additional independent study</b>                                    |
|                                                                              |                                                                        |
| 84 hours                                                                     | Preparation and follow-up work: 67 hours<br>Exam preparation: 29 hours |
| <b>Type of examination / Requirements for the award of the credit points</b> |                                                                        |
| Written exam: 90 minutes                                                     |                                                                        |

|                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Teaching content</b>                                                                                                                      |
| <b>Complex numbers</b>                                                                                                                       |
| <ul style="list-style-type: none"> <li>Normal, polar, and exponential forms</li> <li>Arithmetic</li> <li>Geometric interpretation</li> </ul> |
| <b>Power series</b>                                                                                                                          |
| <ul style="list-style-type: none"> <li>Convergence behavior</li> <li>Methods of power series expansion</li> </ul>                            |

**Complex functions**

- Definition and geometric interpretation
- Exponential function and related functions
- Logarithm and general power

**Differential and integral calculus of several variables**

- Functions with several variables
- Partial differentiation and total differential
- Applications
- Local and global extreme values
- Multiple integrals

**Ordinary differential equations**

- Initial value and boundary value problems
- First-order differential equations
- Numerical solution methods
- Second-order linear differential equations with constant coefficients
- Higher-order differential equations
- Systems of differential equations

**Learning objective: Professional competence****After successfully completing this module, students will be able to**

- explain basic concepts, definitions, and examples of complex analysis, e.g., power series, elementary functions, multivariate real analysis, e.g., derivatives, multiple integrals, and ordinary differential equations, e.g., classification (1)
- correctly apply important convergence criteria to simple sequences of numbers (2)
- correctly apply important convergence criteria to simple number series (2)
- correctly determine convergence ranges of simple power series (2)
- confidently calculate with complex numbers and elementary complex functions (2)
- illustrate complex numbers and elementary complex functions geometrically (2)
- confidently calculate partial and total derivatives of multivariate real functions (2)

- correctly perform important integration methods for multivariate real functions (2)
- investigate the limit and continuity behavior of multivariate real functions (3)
- analyze the behavior of multivariate real functions (including extreme values) using differential calculus (3)
- analyze multivariate functions geometrically using multiple integration (3)
- correctly apply important solution methods to simple ordinary differential equations (3)

## Literature

### Recommended reading

- Stewart, J. (2014). *Calculus*. Cengage Learning
- Stry, Y., & Schwenkert, R. (2012). *Mathematik kompakt: für Ingenieure und Informatiker*. Springer-Verlag
- Westermann, T. (2011) *Mathematik für Ingenieure 1*. Springer-Verlag

The numbers in brackets indicate the levels to be achieved: (1)-know | (2)-can | (3)-understand and apply